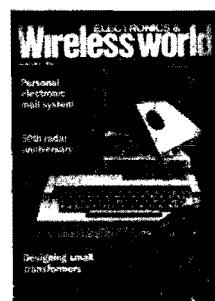


ELECTRONICS & Wireless World

over 70 years in independent electronics publishing


CONTENTS

FEATURES

Designing small transformers by D. Baert A step-by-step approach to the calculation of small power transformers.	17	Robots for learning — and fun by Nigel Clark Small robots can be used to teach the principles of industrial types.	41
Video displays — 2 Supplementing last month's survey, this part gives more on text and graphics displays and includes a short product review.	22	Optical communications — 1935 style by D. Rollema Line-of-sight light communications were used by the German military before the war.	46
Vehicle electronics by R.E. Young Using the development of automotive electronics as an example, R.E. Young discusses the relative merits of large and small development teams.	29	Compact disc players by J.R. Watkinson Details of CD player circuitry.	52
Electronic mailbox by M. Allard A high-speed, reliable electronic message system for private use.	33	Call-cost calculator by S.A. Cameron Construction details for this Z80-based design, which can save its cost in a matter of months.	59
		Radar in retrospect by Tom Ivall A report from an IEE seminar held to celebrate 50 years of radar development.	74

REGULARS

News commentary Every word a pearl? Breadboarding on silicon Satellite radio First international-standard network	6	Communications Public-key cryptosystems Spreading police radio? Software on tv Leukaemia and radiation Kraus's antennas	67
Books	19,61	Feedback Real a.m. British invention Logic symbols	71
Circuit ideas Solar panel regulator Programmable power supply Up/down counter with alarm Buoy flasher	62	New products Soldering thermometer Low-cost plotter Single-chip controllers	78

Front cover illustrates the personal electronic mail system, designed by Martin Allard, which is described in the article starting on page 33. Cover design by Paul Davies.

Editor
PHILIP DARRINGTON

Deputy Editor
GEOFFREY SHORTER, B.Sc.
01-661 8639

Technical Editor
MARTIN ECCLES
01-661 8638

Projects Editor
RICHARD LAMBLEY
01-661 3039 OR 8637

News Editor
DAVID SCOBIE
01-661 8632

Drawing Office
ROGER GOODMAN
01-661 8690

BETTY PALMER

Advertisement Manager
BOB NIBBS, A.C.I.I.
01-661 3130

MICHAEL DOWNING
01-661 8640

ASHLEY WALLIS
01-661 8641

Northern and Midland Sales
BASIL McGOWAN
021-356 4838

Group Classified Manager
BRIAN DURRANT
01-661 3033

Assistant Classified Manager
MIKE RATCLIFFE
01-661 8161

Classified Supervisor
IAN FAUX
01-661 3033

Production
BRIAN BANNISTER
(*Make-up and copy*)
01-661 8648

Current issue price 85p, back issues (if available) £1.06, at Retail and Trade Counter, Units 1 & 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.

By post, current issue £1.30, back issues (if available) £1.40, order and payments to EEP Sundry Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Tel.: 01-661 3378.

Editorial & Advertising offices:
Quadrant House, The Quadrant, Sutton, Surrey SM2 5AD.

Telephones: Editorial 01-661 3614.
Advertising 01-661 3130.

Telex: 892084 BISPRS G (EEP)
Facsimile: 01-661 2071 (Groups II & III)

Beeline (300 baud): 01-661 8978

(Type EWW to start, NNNN to end).

Subscription rates: 1 year £15 UK and £19 outside UK.

Student rates: 1 year £10 UK and £12.70 outside UK.

Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3248.

Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. telephone: 04444 59188. Please notify a change of address.

USA: \$49.40 surface mail, \$102.60 airmail. Business Press International (USA). Subscriptions Office, 205 E. 42nd Street, NY 10017.

USA mailing agents: Expeditors of the Printed World Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022, 2nd class postage paid at New York.

© Business Press International Ltd 1985.
ISBN 0043 6062.

Radar in retrospect

Report on IEE seminar marking fifty years of radar development

"The myth that we entered the war as the sole possessor of radar has of course long since been exploded. The Germans had been developing radar since 1934 and entered the war with the Freya early warning system on 2.5 metres, a wide deployment of Wurzburgs on 50 centimetres, a naval radar on 80 centimetres, and an airborne radar on 60 centimetres. Until our development of centimetric radars the German systems were superior to ours."

This was Sir Robert Cockburn, a former director of the Royal Aircraft Establishment, on Britain's radar in the 1939-45 world war. He was presenting a paper at the IEE's celebratory seminar on fifty years of Radio Detection and Ranging, "The history of radar development to 1945", held in London, 10-12 June.

It was not only Sir Robert's comments that made it abundantly clear, to anyone in doubt, that other countries besides the UK made important contributions to the development of radar. Papers given by American, Dutch, German, Italian, Japanese and Swiss authors, with accounts by British authors of French and Russian work, gave a

pretty full picture of what was essentially an international achievement.

Paradoxically, though, a large part of this combined achievement wasn't co-operative but competitive — under the fierce stimulus of war. The UK's leading work in airborne microwave radar, for example, only became available to Germany and its allies when British aircraft were shot down and their radar sets were salvaged and studied.

The notion put about some decades ago that Britain "invented" radar would certainly not have been swallowed by anyone with even a general knowledge of radio science and engineering, let alone the radar specialists.

The basic principle — reflection of electromagnetic waves from objects — had been known to the whole scientific world for over half a century. After all, as early as 1865 Clerk Maxwell had recorded his belief that light was an electromagnetic-wave phenomenon — implying the possibility of reflection — and Hertz had rapidly shown that reflection was indeed a reality soon after he had demonstrated the existence of

e-m waves in 1888.

From then on, physicists and experimenters in several countries observed the phenomenon of radio wave echos, and a few speculated on possible uses of this effect. The chronological table in this report, starting from a hundred years ago, lists some of the early discoveries, experiments and proposals that led to the development of radar as a mature technology. In general it is a story of gradual progression from metre-waves to centimetre-waves, as magnetrons became more stable and powerful, and of widening application from ground stations to ship and aircraft installations. Dates are largely drawn from the IEE's seminar but should not be taken as necessarily exhaustive, authoritative or completely representative.

The table does show, however, at least half a dozen industrialized nations contributing to radar in various ways. Mr S. Swords of Trinity College, Dublin, in an excellent survey of the beginnings of radar, listed the following nine countries as having provided significant technological effort: (in alphabetical order) America, Britain, France, Germany, Hol-

land, Hungary, Italy, Japan and Russia.

Forgetting the crude, jingoistic propaganda of the past, there is no question, though, that Britain played a very important part in the whole story, particularly under the pressure of war. To judge from the seminar, the UK appears to have made two major contributions. One was the rapid and highly effective development, production and deployment of centimetric airborne radar, following the invention of the resonant cavity magnetron by Randall and Boot at Birmingham University in 1939. The other was the early warning chain of 19 ground metre-wave radar stations built round the coast of Britain — the so-called CH (Chain Home) stations — from Orkney to the Isle of Wight. This chain was built secretly at a cost of about £10M (now roughly equivalent to £200M), was totally integrated with the RAF's system of fighter aircraft control, and was fully operational to meet the onslaught of enemy bombers by the start of the 1939-45 war.

When the Tizard Commission went to the USA in 1940 — to exchange Britain's military tech-

Chronology of early R&D leading to radar

1885	Edison (USA) patents system for collision avoidance at sea.	discover new layer in ionosphere (F) by h.f. echo sounding.	Kuhnold (Germany) starts research on reflection technology at 2 GHz.	craft detection using BBC's Daventry h.f. station.
1888	Hertz (Germany) observes reflection of e-m waves.	Okabe (Japan) invents split-anode Magnetron.	David (France) tests 75-MHz c.w. detection of aircraft.	Gutton (France) installs 16-cm scanning radar on <i>Normandie</i> liner.
1900	Tesla (Serbia) suggests radio detection of icebergs.	David (France) suggests use of h.f. beam for detecting aircraft.	Kuhnold (Germany) demonstrates 630-MHz echos from a battleship.	Okabe (Japan) demonstrates c.w. Doppler radar.
1904	Hulsmeyer (Germany) patents and demonstrates spark-transmitter apparatus for detecting presence of ships — the Telemobiloscope.	Hyland (USA) observes 60 MHz reflections from aircraft. Franklin (UK) proposes use of centimetre waves to obtain "wireless pictures".	USSR tests c.w. 64-MHz early warning radar with range of over 70 km.	Vallauri (Italy) starts research group on "radio detector telemetro".
1916	Marconi (Italy) and Franklin (UK) note reflection of 2-m waves from metal objects.	Butement and Pollard (UK) demonstrate reflection of pulsed 50-cm waves from objects at about 100m range, using rotating beam.	Netherlands armed forces group observes reflections at 240 MHz.	Page (USA) produces 80-MHz pulse radar for aircraft detection.
1921	Hull (USA) publishes description of early form of magnetron.	Philips company (Netherlands) produces 1-GHz split-anode magnetrons.	Tiberio (Italy) formulates theoretically the "radar equation".	Gutton (France) develops split-anode magnetron of 10W mean power at 16cm.
1922	Marconi suggests use of s.w. reflections to detect and find bearing of ships.	Korovin (USSR) starts research on radio detection of aircraft.	Germany installs 100-MHz radar on ships.	Randall and Boot (UK) construct resonant cavity magnetron.
	Taylor and Young (USA) observe 60-MHz reflections from river steamer.	Wilkins (UK) tests c.w. air-	Watson-Watt (UK) presents memorandum "Detection and location of aircraft by radio methods" to government.	USA establishes civilian Radiation Laboratory to develop military microwave radar.
1925	Appleton and Barnett (UK)			USSR establishes permanent military Council for Radar.

nology
capac
Navy
two ad
lowed
Dr E.

part
steps
system
orders
both

British
industry
[Amer
tool o
ance i
ment

All
starte
author
memo
ment
locatio
ods."

ment
with a
fiable
years

1985.
Univers
provoc
invent
port

somew
develo
upon
prereq
tion in
the v
memo
most
public
first to
a syste
ing rad

them.'

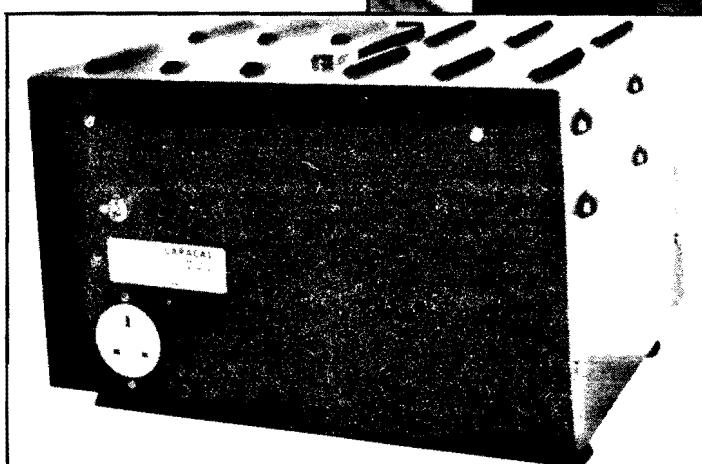
The
that ar
tain in
and p
Japan.
table,
contri
ment,
the co

Italy
to a pa
and Pr
from
lielmo
over a
Rome
impres
radar
author
all, a n
since
coni g
lection
resul
the Ita
Profes

Soo
ELEC

nology secrets for production capacity — the US Army and Navy were so impressed by these two achievements that action followed immediately. According to Dr E.G. Bowen, who related his part in this exchange, urgent steps were taken to put US radar systems into operational use, and orders for the manufacture of both US systems and copies of British radar systems went out to industry. "It persuaded the top [American] brass that radar was a tool of prime operational importance in modern warfare," commented Dr Bowen.

All this can be seen to have started from Watson-Watt's authoritative and now famous memorandum to the UK government in 1935, "Detection and location of aircraft by radio methods." It was certainly this document which provided the IEE with an arbitrary — though justifiable — date for celebrating fifty years of radar development in 1985. And Dr C. Susskind of the University of California, in his provocatively-titled paper "Who invented radar?", seemed to support the choice. After saying somewhat mellifluously that the development of radar followed upon "the confluence of several prerequisites brought to maturation in the 1930s" he expressed the view that Watson-Watt's memorandum stood out as the most influential of all radar publications because it was "the first to lead to the development of a system for gathering and collating radar data and acting upon them."


The other maritime nations that are often compared with Britain in terms of geographical area and population are Italy and Japan. As can be seen from the table, both of these countries contributed to radar development, though somewhat late in the course of events.

Italy's involvement, according to a paper by Captain R. Palandri and Professor M. Calamia, dated from 1933. In that year Guglielmo Marconi — while handing over a microwave link between Rome and Castelgandolfo — impressed the significance of radar on the Italian military authorities. (He had been, after all, a member of the Fascist party since 1923.) Then in 1935 Marconi gave demonstrations of reflection phenomena and this resulted in a report being sent to the Italian minister of defence by Professor U. Tiberio.

Soon afterwards a research

group was formed at the Royal Institute for Electrotechnics and Communications. Professor Tiberio joined this group in 1936 and devised experiments to test the validity of the "radar equation" he had formulated. From 1936 to 1943 various radar systems were developed, including a frequency modulated c.w. equipment working on 200 MHz and a 70-cm pulse radar with a double horn antenna, newly developed transmitter triodes and 'acorn' receiver triodes. Manufacture of radar sets started in 1941 but met with difficulties due to the war and was finally halted when hostilities moved onto Italian territory in 1943.

Japan's contribution to radar was outlined by Dr S. Nakajima of the Japan Radio Company and by Mr Sword's survey. Dr Nakajima spoke of microwave research

Dr E.G. Bowen with the cavity magnetron he took to the USA as part of the Tizard Commission in 1940. The raised cylinder in the middle indicates the periphery of the resonator system; this is surrounded by circular cooling fins. On the left are the cathode and heater leads (the oxide-coated cathode being connected to one side of the heater). On the right is the output side arm.

work by his company and the Japanese Navy's Technical Research Institute from 1932 onwards, but said nobody had practical applications in mind at that time. Research on magnetrons started in 1933, including experiments with 18 different types of anodes. Continuous power outputs of 500W were obtained from water-cooled magnetrons and wavelengths of 0.7, 2, 3, 10 and 15cm were generated.

Dr Nakajima said that in 1953 he had visited the London Science Museum and examined the Birmingham University resonant cavity magnetron on view there. He could not see any difference between it and the Japanese-developed magnetrons of the late 1930s.

In 1936 Professor Okabe, possibly influenced by Professor Yagi (of dipole fame), demonstrated detection of aircraft by a c.w. Doppler system. The following year, experiments in conjunction with the Japanese Navy

achieved detection ranges of up to 5 km in Tokyo Bay. For defence of the Japanese mainland against air attack the Navy set up c.w. radar stations on ships and land operating on 1.5m, 2m and 6m. The 6m sets could detect aircraft in formation at a range of 450 km and single aircraft at 250km. Mobile ground radar for aircraft detection went into production.

Airborne radar development did not start seriously until 1942, after a captured British airborne pulse radar had been sent to Japan from Germany in 1941. But v.h.f. aircraft radar sets were produced, working on wavelengths around 2 metres. A copy of the German Wurzburg gun-laying radar was put into production in 1943 but never went into service.

In general, commented Dr Nakajima, Japan was not very prominent in radar development before 1945 because the country's research capability was in no

way comparable with those of the USA and UK: for example, only A-type displays were used. He complained that he had had an R & D of 800 people working on radar and magnetrons at the time Japan entered the war, but this was cut down to a half in the ensuing years. Japanese scientists and engineers were not fully utilized in the Army and Navy Research programmes.

Most of the people attending the IEE seminar appeared to be sexa-, septa- or octo-genarians. Indeed one very lively account of radar development at the Lorenz company came from the nonagenarian Dr G. Muller — but only his recorded voice, as he had preferred to remain at home in Berlin for his 90th birthday party. Hardly anyone present seemed to be under the age of fifty.

It was a pity the young apparently showed no interest in what was undoubtedly an exciting and adventurous period of electronics history.